Polypyrimidine tract-binding protein PTBP1 is a heterogeneous nuclear ribonucleoprotein primarily known for its alternative splicing activity. It shuttles between the nucleus and cytoplasm via partially overlapping N-terminal nuclear localization (NLS) and export (NES) signals. Despite its fundamental role in cell growth and differentiation, its involvement in human disease remains poorly understood. We identified 27 individuals from 25 families harboring de novo or inherited pathogenic variants - predominantly start-loss (89%) and, to a lesser extent, missense (11%) - affecting NES/NLS motifs. Affected individual presented with a syndromic neurodevelopmental disorder and variable skeletal dysplasia with disproportionate short-limbed short stature. Intellectual functioning ranged from normal to moderately delayed. Start-loss variants led to translation initiation from an alternative downstream in-frame methionine, resulting in loss of the NES and the first half of the bipartite NLS, and increased cytoplasmic stability. Start-loss and missense variants shared a DNA methylation episignature in peripheral blood and altered nucleocytoplasmic distribution in vitro and in vivo with preferential accumulation in processing bodies, causing aberrant gene expression but normal RNA splicing. Transcriptomic analysis of patient-derived fibroblasts revealed dysregulated pathways involved in osteochondrogenesis and neurodevelopment. Overall, our findings highlight a cytoplasmic role for PTBP1 in RNA stability and disease pathogenesis.

PTBP1 variants displaying altered nucleocytoplasmic distribution are responsible for a neurodevelopmental disorder with skeletal dysplasia

Orefice, Martina
Membro del Collaboration Group
;
Ori, Michela
Membro del Collaboration Group
;
2025-01-01

Abstract

Polypyrimidine tract-binding protein PTBP1 is a heterogeneous nuclear ribonucleoprotein primarily known for its alternative splicing activity. It shuttles between the nucleus and cytoplasm via partially overlapping N-terminal nuclear localization (NLS) and export (NES) signals. Despite its fundamental role in cell growth and differentiation, its involvement in human disease remains poorly understood. We identified 27 individuals from 25 families harboring de novo or inherited pathogenic variants - predominantly start-loss (89%) and, to a lesser extent, missense (11%) - affecting NES/NLS motifs. Affected individual presented with a syndromic neurodevelopmental disorder and variable skeletal dysplasia with disproportionate short-limbed short stature. Intellectual functioning ranged from normal to moderately delayed. Start-loss variants led to translation initiation from an alternative downstream in-frame methionine, resulting in loss of the NES and the first half of the bipartite NLS, and increased cytoplasmic stability. Start-loss and missense variants shared a DNA methylation episignature in peripheral blood and altered nucleocytoplasmic distribution in vitro and in vivo with preferential accumulation in processing bodies, causing aberrant gene expression but normal RNA splicing. Transcriptomic analysis of patient-derived fibroblasts revealed dysregulated pathways involved in osteochondrogenesis and neurodevelopment. Overall, our findings highlight a cytoplasmic role for PTBP1 in RNA stability and disease pathogenesis.
2025
Masson, Aymeric; Paccaud, Julien; Orefice, Martina; Colin, Estelle; Mäkitie, Outi; Cormier-Daire, Valérie; Relator, Raissa; Ghosh, Sourav; Strub, Jean...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1326568
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact