In this paper we study the interplay between the operation of circuit-hyperplane relaxation and the Kazhdan–Lusztig theory of matroids. We obtain a family of polynomials, not depending on the matroids but only on their ranks, that relate the Kazhdan–Lusztig, the inverse Kazhdan–Lusztig and the Z-polynomial of each matroid with those of its relaxations. As an application of our main theorem, we prove that all matroids having a free basis are non-degenerate. Additionally, we obtain bounds and explicit formulas for all the coefficients of the Kazhdan–Lusztig, inverse Kazhdan–Lusztig and Z-polynomial of all sparse paving matroids.

Matroid relaxations and Kazhdan–Lusztig non-degeneracy

Ferroni, Luis
;
Vecchi, Lorenzo
2022-01-01

Abstract

In this paper we study the interplay between the operation of circuit-hyperplane relaxation and the Kazhdan–Lusztig theory of matroids. We obtain a family of polynomials, not depending on the matroids but only on their ranks, that relate the Kazhdan–Lusztig, the inverse Kazhdan–Lusztig and the Z-polynomial of each matroid with those of its relaxations. As an application of our main theorem, we prove that all matroids having a free basis are non-degenerate. Additionally, we obtain bounds and explicit formulas for all the coefficients of the Kazhdan–Lusztig, inverse Kazhdan–Lusztig and Z-polynomial of all sparse paving matroids.
2022
Ferroni, Luis; Vecchi, Lorenzo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1326648
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact