We provide a combinatorial way of computing Speyer’s g-polynomial on arbitrary Schubert matroids via the enumeration of certain Delannoy paths. We define a new statistic of a basis in a matroid, and express the g-polynomial of a Schubert matroid in terms of it and internal and external activities. Some surprising positivity properties of the g-polynomial of Schubert matroids are deduced from our expression. Finally, we combine our formulas with a fundamental result of Derksen and Fink to provide an algorithm for computing the g-polynomial of an arbitrary matroid.

Schubert matroids, Delannoy paths, and Speyer's invariant

Ferroni, Luis
2023-01-01

Abstract

We provide a combinatorial way of computing Speyer’s g-polynomial on arbitrary Schubert matroids via the enumeration of certain Delannoy paths. We define a new statistic of a basis in a matroid, and express the g-polynomial of a Schubert matroid in terms of it and internal and external activities. Some surprising positivity properties of the g-polynomial of Schubert matroids are deduced from our expression. Finally, we combine our formulas with a fundamental result of Derksen and Fink to provide an algorithm for computing the g-polynomial of an arbitrary matroid.
2023
Ferroni, Luis
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1326661
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact