Organic solar cells offer several advantages over conventional photovoltaics, such as flexibility, low cost, and abundant materials, and are thus seen as a promising choice for energy harvesting. A rather particular case refers to diluted systems, where a small number of electron-donating molecules are dispersed within an acceptor matrix, hampering hole transport in the absence of percolation paths. Nonetheless, diluted systems present a reasonable performance, thereby raising discussions on how this is achieved. Here, we investigate the hole transport by measuring the hole mobility in several systems with varying donor concentrations. We found an unexpected correlation between the hole mobility and the energy offset between the donor HOMO and the acceptor LUMO (instead of the acceptor HOMO), with the mobility increasing as the offset decreases. Such a correlation is supported by molecular modeling suggesting a contribution from the acceptor LUMO-mediated superexchange mechanism. These results corroborate our experimental observation, hinting at a previously neglected mechanism of transport, which depends on the coupling between the donor HOMO and the acceptor LUMO.

The Role of Acceptor Properties on the Hole Transport Mechanism in Low-Donor-Content Organic Solar Cells

Londi Giacomo
Secondo
;
2024-01-01

Abstract

Organic solar cells offer several advantages over conventional photovoltaics, such as flexibility, low cost, and abundant materials, and are thus seen as a promising choice for energy harvesting. A rather particular case refers to diluted systems, where a small number of electron-donating molecules are dispersed within an acceptor matrix, hampering hole transport in the absence of percolation paths. Nonetheless, diluted systems present a reasonable performance, thereby raising discussions on how this is achieved. Here, we investigate the hole transport by measuring the hole mobility in several systems with varying donor concentrations. We found an unexpected correlation between the hole mobility and the energy offset between the donor HOMO and the acceptor LUMO (instead of the acceptor HOMO), with the mobility increasing as the offset decreases. Such a correlation is supported by molecular modeling suggesting a contribution from the acceptor LUMO-mediated superexchange mechanism. These results corroborate our experimental observation, hinting at a previously neglected mechanism of transport, which depends on the coupling between the donor HOMO and the acceptor LUMO.
2024
Kublitski, Jonas; Londi, Giacomo; Talnack, Felix; Hambsch, Mike; Xing, Shen; Wolansky, Jakob; Mannsfeld Stefan, C. B.; Vandewal, Koen; Benduhn, Johann...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1328212
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact