We investigate the problem of enforcing a desired centrality measure in complex networks, while still keeping the original pattern of the network. Specifically, by representing the network as a graph with suitable nodes and weighted edges, we focus on computing the smallest perturbation on the weights required to obtain a prescribed PageRank or Katz centrality index for the nodes. Our approach relies on optimization procedures that scale with the number of modified edges, enabling the exploration of different scenarios and altering network structure and dynamics.

Enforcing Katz and PageRank Centrality Measures in Complex Networks

Fabio Durastante
Co-primo
;
Beatrice Meini
Co-primo
2025-01-01

Abstract

We investigate the problem of enforcing a desired centrality measure in complex networks, while still keeping the original pattern of the network. Specifically, by representing the network as a graph with suitable nodes and weighted edges, we focus on computing the smallest perturbation on the weights required to obtain a prescribed PageRank or Katz centrality index for the nodes. Our approach relies on optimization procedures that scale with the number of modified edges, enabling the exploration of different scenarios and altering network structure and dynamics.
2025
Cipolla, Stefano; Durastante, Fabio; Meini, Beatrice
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1328647
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact