We consider the two-dimensional nonlinear Schrödinger equation with point interaction and we establish a local well-posedness theory, including blow-up alternative and continuous dependence on the initial data in the energy space. We provide proof by employing Kato's method along with Hardy inequalities with logarithmic correction. Moreover, we establish finite time blow-up for solutions with positive energy and infinite variance.

Local well-posedness and blow-up in the energy space for the 2D NLS with point interaction

Forcella L.
;
Georgiev V.
2025-01-01

Abstract

We consider the two-dimensional nonlinear Schrödinger equation with point interaction and we establish a local well-posedness theory, including blow-up alternative and continuous dependence on the initial data in the energy space. We provide proof by employing Kato's method along with Hardy inequalities with logarithmic correction. Moreover, we establish finite time blow-up for solutions with positive energy and infinite variance.
2025
Forcella, L.; Georgiev, V.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1331507
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact