We consider a degenerate nonlocal parabolic equation in a one-dimensional domain introduced to model hydraulic fractures. The nonlocal operator is given by a fractional power of the Laplacian and the degenerate mobility exponent corresponds to a “strong slippage” regime with “complete wetting” interfacial conditions for local thin-film equations. Using a localized entropy estimate and a Stampacchia-type lemma, we establish a finite speed of propagation result and sufficient conditions (and lower bounds) for the waiting-time phenomenon.

Interface propagation properties for a nonlocal thin-film equation

De Nitti N
;
2024-01-01

Abstract

We consider a degenerate nonlocal parabolic equation in a one-dimensional domain introduced to model hydraulic fractures. The nonlocal operator is given by a fractional power of the Laplacian and the degenerate mobility exponent corresponds to a “strong slippage” regime with “complete wetting” interfacial conditions for local thin-film equations. Using a localized entropy estimate and a Stampacchia-type lemma, we establish a finite speed of propagation result and sufficient conditions (and lower bounds) for the waiting-time phenomenon.
2024
De Nitti, N; Taranets, R M
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1332831
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact