We re-analysed ALMA observations of the [O III] λ88μm emission line in JADES-GS-z14-0, so one of the most distant spectroscopically confirmed galaxy at z=14.18. Our analysis shows a tentative detection of a velocity gradient of [O III] λ88μm using three independent tests: (1) construction of moment maps; (2) extraction of integrated spectra from a grid of apertures; and (3) spectro-astrometry in both the image and uv planes, confirming the presence of the velocity gradient at 3σ significance. We performed kinematical fitting using the KinMS code and estimated a dynamical mass of log10(Mdyn/$\rm M_\odot$)= 9.4$^{+0.8}_{-0.4}$, with the bulk of the uncertainties due to the degeneracy between dynamical mass and inclination. We measure an upper limit on the velocity dispersion (σv) of <40 km s-1 which results in an estimate of Vrot/σ > 2.5. This result, if confirmed with higher-resolution observations, would imply that kinematically cold discs are already in place at z ~ 14. Comparison with mock observations from the SERRA cosmological simulations confirms that even low-resolution observations are capable of detecting a velocity gradient in z > 10 galaxies as compact as JADES-GS-z14-0. This work shows that deeper ALMA or JWST/NIRSpec IFS observations with high spatial resolution will be able to estimate an accurate dynamical mass for JADES-GS-z14-0, providing an upper limit to the stellar mass of this over-luminous galaxy....
Tentative rotation in a galaxy at z~14 with ALMA
Pallottini, A.;
2025-01-01
Abstract
We re-analysed ALMA observations of the [O III] λ88μm emission line in JADES-GS-z14-0, so one of the most distant spectroscopically confirmed galaxy at z=14.18. Our analysis shows a tentative detection of a velocity gradient of [O III] λ88μm using three independent tests: (1) construction of moment maps; (2) extraction of integrated spectra from a grid of apertures; and (3) spectro-astrometry in both the image and uv planes, confirming the presence of the velocity gradient at 3σ significance. We performed kinematical fitting using the KinMS code and estimated a dynamical mass of log10(Mdyn/$\rm M_\odot$)= 9.4$^{+0.8}_{-0.4}$, with the bulk of the uncertainties due to the degeneracy between dynamical mass and inclination. We measure an upper limit on the velocity dispersion (σv) of <40 km s-1 which results in an estimate of Vrot/σ > 2.5. This result, if confirmed with higher-resolution observations, would imply that kinematically cold discs are already in place at z ~ 14. Comparison with mock observations from the SERRA cosmological simulations confirms that even low-resolution observations are capable of detecting a velocity gradient in z > 10 galaxies as compact as JADES-GS-z14-0. This work shows that deeper ALMA or JWST/NIRSpec IFS observations with high spatial resolution will be able to estimate an accurate dynamical mass for JADES-GS-z14-0, providing an upper limit to the stellar mass of this over-luminous galaxy....I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


