We point out two errors in the paper "The integer cohomology algebra of toric arrangements" Adv. Math. 313 (2017). 746--802. The main error concerns Theorem 4.2.17. In that theorem’s proof, Diagram (8) does not commute in general but only under some restrictive hypotheses on the arrangement A. This invalidates the description for the ring structure of H ∗ (M (A); Z) given in Theorems A and B. We refer to alternative descriptions of the cohomology ring H ∗ (M (A); Z). The second error concerns Theorem 7.2.1. The claim holds, but the proof is incorrect. We refer to a counterexample for the argument given in the proof and provide references to a correct proof.

Corrigendum to “The integer cohomology algebra of toric arrangements” [Adv. Math. 313 (2017) 746–802]

Callegaro, Filippo
Co-primo
;
2025-01-01

Abstract

We point out two errors in the paper "The integer cohomology algebra of toric arrangements" Adv. Math. 313 (2017). 746--802. The main error concerns Theorem 4.2.17. In that theorem’s proof, Diagram (8) does not commute in general but only under some restrictive hypotheses on the arrangement A. This invalidates the description for the ring structure of H ∗ (M (A); Z) given in Theorems A and B. We refer to alternative descriptions of the cohomology ring H ∗ (M (A); Z). The second error concerns Theorem 7.2.1. The claim holds, but the proof is incorrect. We refer to a counterexample for the argument given in the proof and provide references to a correct proof.
2025
Callegaro, Filippo; Delucchi, Emanuele
File in questo prodotto:
File Dimensione Formato  
2025 aim2017erratum 1-s2.0-S0001870825005602-main.pdf

accesso aperto

Descrizione: file pubblicato
Tipologia: Versione finale editoriale
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 322.77 kB
Formato Adobe PDF
322.77 kB Adobe PDF Visualizza/Apri
Erratum_Callegaro_Delucchi_submitted_20251105.pdf

accesso aperto

Descrizione: articolo pre print
Tipologia: Documento in Pre-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 215.8 kB
Formato Adobe PDF
215.8 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1334668
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact