In this paper we consider a family of non local functionals of convolution-type depending on a small parameter and -converging to local functionals defined on Sobolev spaces as. We study the asymptotic behaviour of the functionals when the order parameter is subject to Dirichlet conditions on a periodically perforated domains, given by a periodic array of small balls of radius centered on a –periodic lattice, being an additional small parameter and. We highlight differences and analogies with the local case, according to the interplay between the three scales, and. A fundamental tool in our analysis turns out to be a non local variant of the classical Gagliardo–Nirenberg–Sobolev inequality in Sobolev spaces which may be of independent interest and useful for other applications.

Variational analysis of nonlocal Dirichlet problems in periodically perforated domains

Maria Stella Gelli
;
2025-01-01

Abstract

In this paper we consider a family of non local functionals of convolution-type depending on a small parameter and -converging to local functionals defined on Sobolev spaces as. We study the asymptotic behaviour of the functionals when the order parameter is subject to Dirichlet conditions on a periodically perforated domains, given by a periodic array of small balls of radius centered on a –periodic lattice, being an additional small parameter and. We highlight differences and analogies with the local case, according to the interplay between the three scales, and. A fundamental tool in our analysis turns out to be a non local variant of the classical Gagliardo–Nirenberg–Sobolev inequality in Sobolev spaces which may be of independent interest and useful for other applications.
2025
Alicandro, Roberto; Gelli, Maria Stella; Leone, Chiara
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1334748
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact