This paper introduces SCENE-Net, a novel low-resource, white-box model that serves as a compelling proof-of-concept for 3D point cloud segmentation. At its core, SCENE-Net employs Group Equivariant Non-Expansive Operators (GENEOs), a mechanism that leverages geometric priors for enhanced object identification. Our contribution extends the theoretical landscape of geometric learning, highlighting the utility of geometric observers as intrinsic biases in analyzing 3D environments. Through empirical testing and efficiency analysis, we demonstrate the performance of SCENE-Net in detecting power line supporting towers, a key application in forest fire prevention. Our results showcase the superior accuracy and resilience of our model to label noise, achieved with minimal computational resources—this instantiation of SCENE-Net has only eleven trainable parameters—thereby marking a significant step forward in trustworthy machine learning applied to 3D scene understanding. Our code is available in: https://github.com/dlavado/scene-net .

SCENE-Net: Geometric induction for interpretable and low-resource 3D pole detection with Group-Equivariant Non-Expansive Operators

Frosini, Patrizio;
2025-01-01

Abstract

This paper introduces SCENE-Net, a novel low-resource, white-box model that serves as a compelling proof-of-concept for 3D point cloud segmentation. At its core, SCENE-Net employs Group Equivariant Non-Expansive Operators (GENEOs), a mechanism that leverages geometric priors for enhanced object identification. Our contribution extends the theoretical landscape of geometric learning, highlighting the utility of geometric observers as intrinsic biases in analyzing 3D environments. Through empirical testing and efficiency analysis, we demonstrate the performance of SCENE-Net in detecting power line supporting towers, a key application in forest fire prevention. Our results showcase the superior accuracy and resilience of our model to label noise, achieved with minimal computational resources—this instantiation of SCENE-Net has only eleven trainable parameters—thereby marking a significant step forward in trustworthy machine learning applied to 3D scene understanding. Our code is available in: https://github.com/dlavado/scene-net .
2025
Lavado, Diogo; Micheletti, Alessandra; Bocchi, Giovanni; Frosini, Patrizio; Soares, Cláudia
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1336067
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact