The relevance of well-structured mitochondria in sustaining the integrity of the retinal pigment epithelium (RPE) is increasingly evident. Conversely, altered mitochondria are a culprit of age-related macular degeneration (AMD), which is influenced by the activity of mechanistic target of rapamycin (mTOR). In the present manuscript, the mitochondrial status of RPE cells was investigated by light and electron microscopy following the administration of various doses of compounds, which modulate mTOR. The study combines MitoTracker dyes and mitochondrial immunohistochemistry with in situ mitochondrial morphometry. Various doses of 3-methyladenine (3-MA), curcumin, and rapamycin were administered alone or in combination. The activity of autophagy and mTOR was quantified following each treatment. Administration of 3-MA led to activation of mTOR, which was associated with severe cell death, altered membrane permeability, and altered ZO-1 expression. In this condition, mitochondrial mass was reduced, despite a dramatic increase in damaged mitochondria being reported. The decrease in healthy mitochondria was concomitant with alterations in key mitochondria-related antigens such as Tomm20, Pink1, and Parkin. Specific mitochondrial alterations were quantified through in situ ultrastructural morphometry. Both curcumin and rapamycin counteract mTOR activation and rescue mitochondrial status, while preventing RPE cell loss and misplacement of decreased ZO-1 expression. Mitigation of mTOR may protect mitochondria in retinal degeneration.

Modulation of mTOR Within Retinal Pigment Epithelium Affects Cell Viability and Mitochondrial Pathology

Gloria Lazzeri;Michela Ferrucci
Co-primo
;
Paola Lenzi;Maria Anita Giambelluca;Francesco Fornai
Ultimo
2025-01-01

Abstract

The relevance of well-structured mitochondria in sustaining the integrity of the retinal pigment epithelium (RPE) is increasingly evident. Conversely, altered mitochondria are a culprit of age-related macular degeneration (AMD), which is influenced by the activity of mechanistic target of rapamycin (mTOR). In the present manuscript, the mitochondrial status of RPE cells was investigated by light and electron microscopy following the administration of various doses of compounds, which modulate mTOR. The study combines MitoTracker dyes and mitochondrial immunohistochemistry with in situ mitochondrial morphometry. Various doses of 3-methyladenine (3-MA), curcumin, and rapamycin were administered alone or in combination. The activity of autophagy and mTOR was quantified following each treatment. Administration of 3-MA led to activation of mTOR, which was associated with severe cell death, altered membrane permeability, and altered ZO-1 expression. In this condition, mitochondrial mass was reduced, despite a dramatic increase in damaged mitochondria being reported. The decrease in healthy mitochondria was concomitant with alterations in key mitochondria-related antigens such as Tomm20, Pink1, and Parkin. Specific mitochondrial alterations were quantified through in situ ultrastructural morphometry. Both curcumin and rapamycin counteract mTOR activation and rescue mitochondrial status, while preventing RPE cell loss and misplacement of decreased ZO-1 expression. Mitigation of mTOR may protect mitochondria in retinal degeneration.
2025
Lazzeri, Gloria; Ferrucci, Michela; Lenzi, Paola; Giambelluca, Maria; Biagioni, Francesca; Letizia Busceti, Carla; Frati, Alessandro; Fornai, Francesc...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1336609
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact