Anorexia nervosa (AN) represents an eating disorder, which features the highest rate of mortality among all psychiatric disorders. The disease prevalence is increasing steadily, and an effective cure is missing. The neurobiology of the disease is largely unknown, and only a few studies were designed to disclose specific brain areas, where altered neural transmission may occur. In AN behavioral alterations surpassing altered feeding are present, which often involve archaic behaviors finalized to the survival of the species. In fact, alterations of sleep and reward-driven behavior accompany the eating disorder, where a disruption of peripheral and central circadian rhythms occurs along with effortful behaviors, aberrant learning and mild cognitive impairment. Abnormal behavior often co-exists with a number of metabolic alterations in peripheral organs. The present article wishes to analyze the potential role of altered brain circuitry within the brainstem reticular formation during AN. In fact, this brain area contains neuronal nuclei and pathways, which are pivotal in connecting eating pattern with archaic behaviorsand autonomic activity within peripheral organs. A number of reticular nuclei releasing catecholamine and non-catecholamine neurotransmittersare evidenced in relationship with altered behavioral states and vegetative control to produce this psycho-metabolic disorder. The relevance of the reticular formation in sustaining the disorder is discussed in the light of developing effective therapeutic strategies.

The brainstem reticular formation pivots abnormal neural transmission in the course of Anorexia Nervosa

Gloria Lazzeri;· Stefano Puglisi‑Allegra;· Francesco Fornai
2025-01-01

Abstract

Anorexia nervosa (AN) represents an eating disorder, which features the highest rate of mortality among all psychiatric disorders. The disease prevalence is increasing steadily, and an effective cure is missing. The neurobiology of the disease is largely unknown, and only a few studies were designed to disclose specific brain areas, where altered neural transmission may occur. In AN behavioral alterations surpassing altered feeding are present, which often involve archaic behaviors finalized to the survival of the species. In fact, alterations of sleep and reward-driven behavior accompany the eating disorder, where a disruption of peripheral and central circadian rhythms occurs along with effortful behaviors, aberrant learning and mild cognitive impairment. Abnormal behavior often co-exists with a number of metabolic alterations in peripheral organs. The present article wishes to analyze the potential role of altered brain circuitry within the brainstem reticular formation during AN. In fact, this brain area contains neuronal nuclei and pathways, which are pivotal in connecting eating pattern with archaic behaviorsand autonomic activity within peripheral organs. A number of reticular nuclei releasing catecholamine and non-catecholamine neurotransmittersare evidenced in relationship with altered behavioral states and vegetative control to produce this psycho-metabolic disorder. The relevance of the reticular formation in sustaining the disorder is discussed in the light of developing effective therapeutic strategies.
2025
Lazzeri, Gloria; Busceti, Carla L.; Alessandra Polzella, ·; Alessandro Frati, ·; Puglisi Allegra, Stefano; Fornai, Francesco
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1339087
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact