: Organogenesis emerges from the interplay between genetic and physical interactions within a growing cellular system. While numerous studies have explored how genetic and molecular networks regulate cell activity, the impact of physical interactions and the resulting mechanical constraints on organ development remains poorly understood. In this study, we combine extensive genetic analysis, live imaging, and mechanical measurements with spatiotemporal computational modeling to show that, in the Arabidopsis root, changes in the mechanical properties of elongating cell walls influence growth and division rate of neighboring meristematic cells, thereby shaping root development. We propose that the cell wall serves as a crucial source of both autonomous and nonautonomous mechanical signals, providing a compelling example of how mechanical forces contribute to organ growth and development.

Cell Wall-derived Mechanical Signals Control Cell Growth and Division During Root Development

Paolo Costantino;Riccardo Di Mambro;Noemi Svolacchia;Elena Salvi;Alessio Terenzi;
2025-01-01

Abstract

: Organogenesis emerges from the interplay between genetic and physical interactions within a growing cellular system. While numerous studies have explored how genetic and molecular networks regulate cell activity, the impact of physical interactions and the resulting mechanical constraints on organ development remains poorly understood. In this study, we combine extensive genetic analysis, live imaging, and mechanical measurements with spatiotemporal computational modeling to show that, in the Arabidopsis root, changes in the mechanical properties of elongating cell walls influence growth and division rate of neighboring meristematic cells, thereby shaping root development. We propose that the cell wall serves as a crucial source of both autonomous and nonautonomous mechanical signals, providing a compelling example of how mechanical forces contribute to organ growth and development.
2025
Sabatini, Sabrina; Costantino, Paolo; Ruocco, Giancarlo; Dello Ioio, Raffaele; Di Mambro, Riccardo; Marconi, Marco; Wabnik, Krzysztof; Svolacchia, Noe...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1339101
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact