AI models for ranking candidates to a job position are increasingly adopted. They bring a new layer of opaqueness in the way candidates are evaluated. We present preliminary research on stakeholder analysis and requirement elicitation for designing an explainability component in AI models for ranking candidates to a job position.

Requirements of eXplainable AI in Algorithmic Hiring

Andrea Beretta;Gianmario Ercoli;Alfonso Ferraro;Riccardo Guidotti;Andrea Iommi;Antonio Mastropietro;Anna Monreale;Daniela Rotelli
;
Salvatore Ruggieri
2024-01-01

Abstract

AI models for ranking candidates to a job position are increasingly adopted. They bring a new layer of opaqueness in the way candidates are evaluated. We present preliminary research on stakeholder analysis and requirement elicitation for designing an explainability component in AI models for ranking candidates to a job position.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1339411
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact