Existence of non-unique solutions of finite kinetic energy for the three dimensional Navier-Stokes equations is proved in the slightly supercritical hyper-dissipative setting introduced by Tao [20]. The result is based on the convex integration techniques of Buckmaster and Vicol [3], and extends Luo and Titi [16] in the slightly supercritical setting. To reach the threshold identified by Tao, we introduce the impulsed Beltrami flows, a variant of the intermittent Beltrami flows of Buckmaster and Vicol.

Non-uniqueness of weak solutions for a logarithmically supercritical hyperdissipative Navier-Stokes system

Romito, Marco;Triggiano, Francesco
2025-01-01

Abstract

Existence of non-unique solutions of finite kinetic energy for the three dimensional Navier-Stokes equations is proved in the slightly supercritical hyper-dissipative setting introduced by Tao [20]. The result is based on the convex integration techniques of Buckmaster and Vicol [3], and extends Luo and Titi [16] in the slightly supercritical setting. To reach the threshold identified by Tao, we introduce the impulsed Beltrami flows, a variant of the intermittent Beltrami flows of Buckmaster and Vicol.
2025
Romito, Marco; Triggiano, Francesco
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1339928
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact