A thermosensitive collagen-based gel (TSV gel), containing type I and III collagen, has been developed to improve the handling and stability of bone graft materials. However, its direct effect on osteoblasts is not well understood. This in vitro study evaluated the biological response of human oral osteoblasts to four bone substitutes: OsteoBiol® GTO® (larger granules with 20% TSV gel), Gen-OS® (smaller granules), Gen-OS® combined with 50% TSV gel (Gen-OS®+TSV), and TSV gel alone. Cell proliferation, adhesion, morphology, collagen and calcium deposition, alkaline phosphatase (ALP) activity, gene expression of osteogenic markers and integrins, and changes in pH and extracellular calcium and phosphate levels were investigated. All materials supported osteoblast activity, but Gen-OS+TSV and GTO showed the most pronounced effects. These two groups promoted better cell adhesion and proliferation, higher ALP activity, and greater matrix mineralization. GTO improved cell adhesion, while the addition of TSV gel to Gen-OS enhanced biological responses compared with Gen-OS alone. Integrins α2, α5, β1, and β3, important for cell attachment to collagen, were notably upregulated in Gen-OS+TSV and GTO. Both groups also showed increased expression of osteogenic markers such as BMP-2, ALP, and osteocalcin (OCN). Higher extracellular ion concentrations and a more alkaline pH were observed, particularly in conditions without cells, suggesting active ion uptake by osteoblasts. In conclusion, combining TSV gel with collagen-based granules improves the cellular environment for osteoblast activity and may support bone regeneration more effectively than using either component alone.
Evaluation of Collagenic Porcine Bone Blended with a Collagen Gel for Bone Regeneration: An In Vitro Study
Cinquini C.;Petrini M.;Barone A.;
2025-01-01
Abstract
A thermosensitive collagen-based gel (TSV gel), containing type I and III collagen, has been developed to improve the handling and stability of bone graft materials. However, its direct effect on osteoblasts is not well understood. This in vitro study evaluated the biological response of human oral osteoblasts to four bone substitutes: OsteoBiol® GTO® (larger granules with 20% TSV gel), Gen-OS® (smaller granules), Gen-OS® combined with 50% TSV gel (Gen-OS®+TSV), and TSV gel alone. Cell proliferation, adhesion, morphology, collagen and calcium deposition, alkaline phosphatase (ALP) activity, gene expression of osteogenic markers and integrins, and changes in pH and extracellular calcium and phosphate levels were investigated. All materials supported osteoblast activity, but Gen-OS+TSV and GTO showed the most pronounced effects. These two groups promoted better cell adhesion and proliferation, higher ALP activity, and greater matrix mineralization. GTO improved cell adhesion, while the addition of TSV gel to Gen-OS enhanced biological responses compared with Gen-OS alone. Integrins α2, α5, β1, and β3, important for cell attachment to collagen, were notably upregulated in Gen-OS+TSV and GTO. Both groups also showed increased expression of osteogenic markers such as BMP-2, ALP, and osteocalcin (OCN). Higher extracellular ion concentrations and a more alkaline pH were observed, particularly in conditions without cells, suggesting active ion uptake by osteoblasts. In conclusion, combining TSV gel with collagen-based granules improves the cellular environment for osteoblast activity and may support bone regeneration more effectively than using either component alone.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


