The study investigates the evolution of elastic behavior in lattice structures subjected to cyclical loading after pre-straining to various levels of plastic deformation. Triply Periodic Minimal Surface (TPMS) gyroid lattice specimens were fabricated using the Laser Powder Bed Fusion (L-PBF) technique and subjected to controlled steps of compressive pre-straining, inducing plastic deformations. Subsequently, the specimens underwent cyclic loading-unloading tests to characterize their elastic behavior. Stress-strain curves were monitored throughout the testing to determine the apparent elastic modulus (E*) at each cycle. The results demonstrate that E* of pre-strained lattices are not static. The initial cycles after pre-straining exhibit a change in stiffness, with the E* initially increasing depending on the pre-strain level. This behavior is attributed to the morphology of the lattice itself, which is more sensible to local hardening due to an evident bending-dominated mechanical response. Over slight plastic strains, the elastic modulus stabilizes, reaching a new stiffening-to-plastic strain evolution. The magnitude of this shift and the experimental response's dispersion are found to not be dependent on the pre-strain level.
Cyclic-elastic behavior in plastically pre-strained lattice structures
Senegaglia I.
;Macoretta G.
;Grossi T.;Monelli B. D.
2025-01-01
Abstract
The study investigates the evolution of elastic behavior in lattice structures subjected to cyclical loading after pre-straining to various levels of plastic deformation. Triply Periodic Minimal Surface (TPMS) gyroid lattice specimens were fabricated using the Laser Powder Bed Fusion (L-PBF) technique and subjected to controlled steps of compressive pre-straining, inducing plastic deformations. Subsequently, the specimens underwent cyclic loading-unloading tests to characterize their elastic behavior. Stress-strain curves were monitored throughout the testing to determine the apparent elastic modulus (E*) at each cycle. The results demonstrate that E* of pre-strained lattices are not static. The initial cycles after pre-straining exhibit a change in stiffness, with the E* initially increasing depending on the pre-strain level. This behavior is attributed to the morphology of the lattice itself, which is more sensible to local hardening due to an evident bending-dominated mechanical response. Over slight plastic strains, the elastic modulus stabilizes, reaching a new stiffening-to-plastic strain evolution. The magnitude of this shift and the experimental response's dispersion are found to not be dependent on the pre-strain level.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


