The reduction of nitroaromatic compound bifenox (methyl 5-(2,4-dichlorophenoxy)-2-nitrobenzoate) was studied in aprotic solvents in the absence or presence of cyclodextrin (CD) molecules of different cavity sizes. bCD and gCD form complexes with bifenox in DMSO with the complex formation constants (5+-2) x 102 M-1 [bCD-bifenox] and (3+-1) x 102 M-1[gCD-bifenox], respectively. Bifenox yields a relatively stable anion radical in dimethyl sulfoxide, which is further reduced at more negative potentials by an overall addition of three electrons and four protons to the corresponding phenylhydroxylamine. In the presence of bCD the first reduction wave of bifenox becomes irreversible, it is shifted towards more positive potentials and the uptake of more than one electron is observed (up to four electrons during the exhaustive electrolysis). The first reduction wave of bifenox is not affected by the addition of glucose confirming that a simple availability of protons from the OH groups is not the main factor in further transformation of anion radical in the presence of bCD. The complex formation with bCD facilitates the protonation and additionally protects the molecule from disintegration into 2,4-dichlorophenol. A yield of 2,4-dichlorophenol decreases in the order bCD, gCD and aCD, respectively.

Host–Guest interaction of pesticide bifenox with cyclodextrin molecules. An electrochemical study.

GIANNARELLI, STEFANIA
2009-01-01

Abstract

The reduction of nitroaromatic compound bifenox (methyl 5-(2,4-dichlorophenoxy)-2-nitrobenzoate) was studied in aprotic solvents in the absence or presence of cyclodextrin (CD) molecules of different cavity sizes. bCD and gCD form complexes with bifenox in DMSO with the complex formation constants (5+-2) x 102 M-1 [bCD-bifenox] and (3+-1) x 102 M-1[gCD-bifenox], respectively. Bifenox yields a relatively stable anion radical in dimethyl sulfoxide, which is further reduced at more negative potentials by an overall addition of three electrons and four protons to the corresponding phenylhydroxylamine. In the presence of bCD the first reduction wave of bifenox becomes irreversible, it is shifted towards more positive potentials and the uptake of more than one electron is observed (up to four electrons during the exhaustive electrolysis). The first reduction wave of bifenox is not affected by the addition of glucose confirming that a simple availability of protons from the OH groups is not the main factor in further transformation of anion radical in the presence of bCD. The complex formation with bCD facilitates the protonation and additionally protects the molecule from disintegration into 2,4-dichlorophenol. A yield of 2,4-dichlorophenol decreases in the order bCD, gCD and aCD, respectively.
2009
Hromadova, Magdalena; Sokolova, Romana; Pospisil, Lubomir; Lachmanová, Stepánka; Fanelli, Nicolangelo; Giannarelli, Stefania
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/135666
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 4
social impact