We study a [1] -capacitary type problem in [R^2] : given a set [E] , we minimize the perimeter (in the sense of De Giorgi) among all the sets containing [E] (modulo [H^1] ) and satisfying an indecomposability constraint (according to the definition by [1]. By suitably choosing the representant of the relevant set [E] , we show that a convexification process characterizes the minimizers. As a consequence of our result we determine the [1] -capacity of (a suitable representant of) sets with finite perimeter in the plane.

On a 1-capacitary problem in the plane

GELLI, MARIA STELLA;
2010-01-01

Abstract

We study a [1] -capacitary type problem in [R^2] : given a set [E] , we minimize the perimeter (in the sense of De Giorgi) among all the sets containing [E] (modulo [H^1] ) and satisfying an indecomposability constraint (according to the definition by [1]. By suitably choosing the representant of the relevant set [E] , we show that a convexification process characterizes the minimizers. As a consequence of our result we determine the [1] -capacity of (a suitable representant of) sets with finite perimeter in the plane.
2010
Gelli, MARIA STELLA; Focardi, M; Pisante, G.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/135880
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact