We present a DFT/classical molecular dynamics model of DNA charge conductivity. The model involves a temperature-driven, hole-hopping charge transfer and includes the time-dependent nonequilibrium interaction of DNA with its molecular environment. We validate our method against a variety of hole transport experiments. The method predicts a significant hole-transfer slowdown of ∼35% from dry to wet DNA with and without electric field bias. In addition, in agreement with experiments, it also predicts an insulating behavior of (GC)N oligomers for 40 < N < 1000, depending on the experimental setup.

Modeling Hole Transport in Wet and Dry DNA

MENNUCCI, BENEDETTA
2010-01-01

Abstract

We present a DFT/classical molecular dynamics model of DNA charge conductivity. The model involves a temperature-driven, hole-hopping charge transfer and includes the time-dependent nonequilibrium interaction of DNA with its molecular environment. We validate our method against a variety of hole transport experiments. The method predicts a significant hole-transfer slowdown of ∼35% from dry to wet DNA with and without electric field bias. In addition, in agreement with experiments, it also predicts an insulating behavior of (GC)N oligomers for 40 < N < 1000, depending on the experimental setup.
2010
M., Pavanello; L., Adamowicz; M., Volobuyev; Mennucci, Benedetta
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/136229
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? ND
social impact