Scour control downstream of hydraulic structures is an important topic in hydraulic engineering. Block ramps or rock chutes are often used to control scour downstream of hydraulic structures and have the peculiarity to be ecofriendly. Although these structures assure great energy dissipation, the rapid passage from supercritical to subcritical flow at the toe results in a scour hole with geometric parameters that have to be evaluated in order to avoid foundation problems. For this reason, the analysis of the scour process and the comprehension of the hydrodynamic mechanisms on which it is based are extremely important. In this paper, the results of systematic experimental tests are shown that analyze both the influence of the stilling basin tailwater depth and the ramp toe stabilizing structures, for both uniform and nonuniform channel bed materials. In fact, block ramps are generally stabilized by inserting piles or micropiles at the toe. The upper edge level of piles or micropiles was found a relevant parameter for the scour hole geometry. Simple novel relationships that account for tailwater depth, pile position, and bed material gradation are developed to evaluate the main lengths of the scour hole, in the case in which a free hydraulic jump in a mobile bed occurs. These simple relationships give engineers helpful instruments in block ramp design.

Influence of Tailwater Depth and Pile Position on Scour Downstream of Block Ramps

PAGLIARA, STEFANO;PALERMO, MICHELE
2010-01-01

Abstract

Scour control downstream of hydraulic structures is an important topic in hydraulic engineering. Block ramps or rock chutes are often used to control scour downstream of hydraulic structures and have the peculiarity to be ecofriendly. Although these structures assure great energy dissipation, the rapid passage from supercritical to subcritical flow at the toe results in a scour hole with geometric parameters that have to be evaluated in order to avoid foundation problems. For this reason, the analysis of the scour process and the comprehension of the hydrodynamic mechanisms on which it is based are extremely important. In this paper, the results of systematic experimental tests are shown that analyze both the influence of the stilling basin tailwater depth and the ramp toe stabilizing structures, for both uniform and nonuniform channel bed materials. In fact, block ramps are generally stabilized by inserting piles or micropiles at the toe. The upper edge level of piles or micropiles was found a relevant parameter for the scour hole geometry. Simple novel relationships that account for tailwater depth, pile position, and bed material gradation are developed to evaluate the main lengths of the scour hole, in the case in which a free hydraulic jump in a mobile bed occurs. These simple relationships give engineers helpful instruments in block ramp design.
2010
Pagliara, Stefano; Palermo, Michele
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/138062
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 25
social impact