The low-energy vortex effective action is constructed in a wide class of systems in a color-flavor locked vacuum, which generalizes the results found earlier in the context of U(N) models. It describes the weak fluctuations of the non-Abelian orientational moduli on the vortex worldsheet. For instance, for the minimum vortex in SO(2N) x U(1) or USp(2N) x U(1) gauge theories, the effective action found is a two-dimensional sigma model living on the Hermitian symmetric spaces SO(2N)/U(N) or USp(2N)/U(N), respectively. The fluctuating moduli have the structure of that of a quantum particle state in spinor representations of the GNO dual of the color-flavor SO(2N)(C+F) or USp(2N)(C+F) symmetry, i.e. of SO(2N) or of SO(2N + 1). Applied to the benchmark U(N) model our procedure reproduces the known CP(N-1) worldsheet action; our recipe allows us to obtain also the effective vortex action for some higher-winding vortices in U(N) and SO(2N) theories.

Non-Abelian vortex dynamics: effective world-sheet action

KONISHI, KENICHI
2010-01-01

Abstract

The low-energy vortex effective action is constructed in a wide class of systems in a color-flavor locked vacuum, which generalizes the results found earlier in the context of U(N) models. It describes the weak fluctuations of the non-Abelian orientational moduli on the vortex worldsheet. For instance, for the minimum vortex in SO(2N) x U(1) or USp(2N) x U(1) gauge theories, the effective action found is a two-dimensional sigma model living on the Hermitian symmetric spaces SO(2N)/U(N) or USp(2N)/U(N), respectively. The fluctuating moduli have the structure of that of a quantum particle state in spinor representations of the GNO dual of the color-flavor SO(2N)(C+F) or USp(2N)(C+F) symmetry, i.e. of SO(2N) or of SO(2N + 1). Applied to the benchmark U(N) model our procedure reproduces the known CP(N-1) worldsheet action; our recipe allows us to obtain also the effective vortex action for some higher-winding vortices in U(N) and SO(2N) theories.
2010
Gudnason, Sb; Jiang, Yg; Konishi, Kenichi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/138173
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 25
social impact