In this paper we propose a cooperative distributed linear model predictive control strategy applicable to any finite number of subsystems satisfying a stabilizability condition. The control strategy has the following features: hard input constraints are satisfied; terminating the iteration of the distributed controllers prior to convergence retains closed-loop stability; in the limit of iterating to convergence, the control feedback is plantwide Pareto optimal and equivalent to the centralized control solution; no coordination layer is employed. We provide guidance in how to partition the subsystems within the plant. We first establish exponential stability of suboptimal model predictive control and show that the proposed cooperative control strategy is in this class. We also establish that under perturbation from a stable state estimator, the origin remains exponentially stable. For plants with sparsely coupled input constraints, we provide an extension in which the decision variable space of each suboptimization is augmented to achieve Pareto optimality. We conclude with a simple example showing the performance advantage of cooperative control compared to noncooperative and decentralized control strategies. © 2010 Elsevier B.V. All rights reserved.

Cooperative Distributed Model Predictive Control

PANNOCCHIA, GABRIELE
2010

Abstract

In this paper we propose a cooperative distributed linear model predictive control strategy applicable to any finite number of subsystems satisfying a stabilizability condition. The control strategy has the following features: hard input constraints are satisfied; terminating the iteration of the distributed controllers prior to convergence retains closed-loop stability; in the limit of iterating to convergence, the control feedback is plantwide Pareto optimal and equivalent to the centralized control solution; no coordination layer is employed. We provide guidance in how to partition the subsystems within the plant. We first establish exponential stability of suboptimal model predictive control and show that the proposed cooperative control strategy is in this class. We also establish that under perturbation from a stable state estimator, the origin remains exponentially stable. For plants with sparsely coupled input constraints, we provide an extension in which the decision variable space of each suboptimization is augmented to achieve Pareto optimality. We conclude with a simple example showing the performance advantage of cooperative control compared to noncooperative and decentralized control strategies. © 2010 Elsevier B.V. All rights reserved.
Stewart, Bt; Venkat, An; Rawlings, Jb; Wright, Sj; Pannocchia, Gabriele
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/138351
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 387
  • ???jsp.display-item.citation.isi??? 324
social impact