The aggregation of perfluoroctanoate salts in H2O is studied by 19F NMR on solutions of LiPFO, NaPFO, and CsPFO, without and with the addition of two poly(ethylene glycol) (PEG) oligomers of molecular weight 1500 and 3400 Da, respectively, and with the addition of suitable crown ethers. The 19F chemical shift (cs) trends are monitored, at 25 °C, in a concentration range including the critical micellar concentration (cmc) or, in the presence of PEG, the critical aggregation concentration (cac). The cac values in the samples with PEG are lower than the cmc values of the corresponding samples without PEG; moreover, the 19F cs trends above the cac and above the polymer saturation concentration reveal and help to explain some peculiarities of the aggregation process of PEGon PFOmicelles, which, in the first step, seems to occur while the surfactant concentration in water is still increasing. Also in LiPFO/H2 O or NaPFO/H2 O solutions containing 12-crown-4 or 15-crown-5 ethers, suitable to complex Li...or Na...ions, respectively, the cmc decreases. On the other hand, the micellization process in the presence of crown ethers does not show other peculiarities. The prevailing conformations of the PFO chain are discussed on the basis of quantum-mechanical calculations. The theoretical chemical shifts were computed at the DFT level of theory, taking into account the effects of the environment by means of the IEF-PCM method. The helical structure is the most stable one, but anti conformations are easily accessible, in both the aqueous and fluorinated environment. The comparison between computed and experimental chemical shifts indicates that anti conformations are more important in the micelles than in water and in CsPFO micelles than in LiPFO or NaPFO ones.

Aggregation of Perfluoroctanoate Salts Studied by 19F NMR and DFT Calculations: Counterion Complexation, Poly(ethylene glycol) Addition, and Conformational Effects

CATALANO, DONATA INES MARIA;
2010-01-01

Abstract

The aggregation of perfluoroctanoate salts in H2O is studied by 19F NMR on solutions of LiPFO, NaPFO, and CsPFO, without and with the addition of two poly(ethylene glycol) (PEG) oligomers of molecular weight 1500 and 3400 Da, respectively, and with the addition of suitable crown ethers. The 19F chemical shift (cs) trends are monitored, at 25 °C, in a concentration range including the critical micellar concentration (cmc) or, in the presence of PEG, the critical aggregation concentration (cac). The cac values in the samples with PEG are lower than the cmc values of the corresponding samples without PEG; moreover, the 19F cs trends above the cac and above the polymer saturation concentration reveal and help to explain some peculiarities of the aggregation process of PEGon PFOmicelles, which, in the first step, seems to occur while the surfactant concentration in water is still increasing. Also in LiPFO/H2 O or NaPFO/H2 O solutions containing 12-crown-4 or 15-crown-5 ethers, suitable to complex Li...or Na...ions, respectively, the cmc decreases. On the other hand, the micellization process in the presence of crown ethers does not show other peculiarities. The prevailing conformations of the PFO chain are discussed on the basis of quantum-mechanical calculations. The theoretical chemical shifts were computed at the DFT level of theory, taking into account the effects of the environment by means of the IEF-PCM method. The helical structure is the most stable one, but anti conformations are easily accessible, in both the aqueous and fluorinated environment. The comparison between computed and experimental chemical shifts indicates that anti conformations are more important in the micelles than in water and in CsPFO micelles than in LiPFO or NaPFO ones.
2010
Abbandonato, G.; Catalano, DONATA INES MARIA; Marini, A.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/139334
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact