One of the proposed solutions for a transverse momentum (p(T)) based trigger at SLHC for the CMS experiment is based on the concept known as the "cluster width" approach, in which clusters produced by low pT tracks are rejected based on the width of the cluster shape, made either on a single strip sensor or a doublet of strip sensors by a suitable electronics logic at the level of the front- end. This information can then be used in many ways to provide first level trigger primitives. These kinds of modules are inexpensive, and coupled high-speed opto-electronic components this concept provides the simplest solution to the first level trigger for SLHC trackers. We will present the simulation studies aimed to optimize the concept, as well as the basic building blocks of the module and their connectivity. Finally we will provide the experimental validation of it by using data collected by the CMS Tracker during the Cosmic runs in 2008 and 2009 as well as the first collision data from the LHC.

Concepts for a tracker trigger based on a multi-layer layout and on-detector data reduction using a cluster size approach

MESSINEO, ALBERTO MARIA;
2010-01-01

Abstract

One of the proposed solutions for a transverse momentum (p(T)) based trigger at SLHC for the CMS experiment is based on the concept known as the "cluster width" approach, in which clusters produced by low pT tracks are rejected based on the width of the cluster shape, made either on a single strip sensor or a doublet of strip sensors by a suitable electronics logic at the level of the front- end. This information can then be used in many ways to provide first level trigger primitives. These kinds of modules are inexpensive, and coupled high-speed opto-electronic components this concept provides the simplest solution to the first level trigger for SLHC trackers. We will present the simulation studies aimed to optimize the concept, as well as the basic building blocks of the module and their connectivity. Finally we will provide the experimental validation of it by using data collected by the CMS Tracker during the Cosmic runs in 2008 and 2009 as well as the first collision data from the LHC.
2010
Beaupere, N.; Bernardini, J.; Boudoul, G.; Contardo, D.; Dell'Orso, R.; Messineo, ALBERTO MARIA; Palla, F.; Parrini, G.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/139756
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
social impact