Significant cases of time-evolution equations, the linear Schroedinger and the Fokker--Planck equation are considered. It is known that equations of this type can be transformed, in some cases, into a highly simplified form. The properties of these equations in their initial and their simplified form are compared, showing in particular that this transformation partially prevents a clear understanding and a full application of the (physically relevant) notion of the so-called step up/down operators. These operators are shown to be recursion operators, related to the Lie point symmetries of the equations, which are also carefully discussed.

Symmetries and related recursion operators of linear evolution equations

CICOGNA, GIAMPAOLO
2010-01-01

Abstract

Significant cases of time-evolution equations, the linear Schroedinger and the Fokker--Planck equation are considered. It is known that equations of this type can be transformed, in some cases, into a highly simplified form. The properties of these equations in their initial and their simplified form are compared, showing in particular that this transformation partially prevents a clear understanding and a full application of the (physically relevant) notion of the so-called step up/down operators. These operators are shown to be recursion operators, related to the Lie point symmetries of the equations, which are also carefully discussed.
2010
Cicogna, Giampaolo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/139789
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact