Abstract: Non-uniform cache architecture (NUCA) aims to limit the wire-delay problem typical of large on-chip last level caches: by partitioning a large cache into several banks, with the latency of each one depending on its physical location and by employing a scalable on-chip network to interconnect the banks with the cache controller, the average access latency can be reduced with respect to a traditional cache. The addition of a migration mechanism to move the most frequently accessed data towards the cache controller (D-NUCA) further improves the average access latency. In this work we propose a last-level cache design, based on the D-NUCA scheme, which is able to significantly limit its static power consumption by dynamically adapting to the needs of the running application: the way adaptable D-NUCA cache. This design leads to a fast and power-efficient memory hierarchy with an average reduction by 31.2% in energy-delay product (EDP) with respect to a traditional D-NUCA. We propose and discuss a methodology for tuning the intrinsic parameters of our design and investigate the adoption of the way adaptable D-NUCA scheme as a shared L2 cache in a chip multiprocessor (CMP) system (24% reduction of EDP).

Way-Adaptable D-Nuca Caches

FOGLIA, PIERFRANCESCO;PRETE, COSIMO ANTONIO
2010-01-01

Abstract

Abstract: Non-uniform cache architecture (NUCA) aims to limit the wire-delay problem typical of large on-chip last level caches: by partitioning a large cache into several banks, with the latency of each one depending on its physical location and by employing a scalable on-chip network to interconnect the banks with the cache controller, the average access latency can be reduced with respect to a traditional cache. The addition of a migration mechanism to move the most frequently accessed data towards the cache controller (D-NUCA) further improves the average access latency. In this work we propose a last-level cache design, based on the D-NUCA scheme, which is able to significantly limit its static power consumption by dynamically adapting to the needs of the running application: the way adaptable D-NUCA cache. This design leads to a fast and power-efficient memory hierarchy with an average reduction by 31.2% in energy-delay product (EDP) with respect to a traditional D-NUCA. We propose and discuss a methodology for tuning the intrinsic parameters of our design and investigate the adoption of the way adaptable D-NUCA scheme as a shared L2 cache in a chip multiprocessor (CMP) system (24% reduction of EDP).
2010
Bardine, Alessandro; Comparetti, Manuel; Foglia, Pierfrancesco; Gabrielli, Giacomo; Prete, COSIMO ANTONIO
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/141682
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? ND
social impact