Polymeric materials play a key role in the production of medical and clinical devices thanks to their special features such as flexibility, easy processing and good price/performance ratio. Among the different polymeric matrixes, one of the most used is Poly(vinyl chloride) (PVC). At room temperature PVC is hard and brittle, thus great amounts (40-50%) of phthalate esters that act as plasticizers are added to the polymer to make it flexible and appropriate for medical use. Di-(2-ethylhexyl)-phthalate (DEHP) is the most widely used plasticizer in PVC medical devices. However, DEHP is not chemically bound to PVC and migrates from medical devices with time and use. The potential for DEHP to produce adverse effects in humans has been the subject of considerable discussion and debate in the scientific community. In particular, newborns in the new environment have to be considered at particularly increased risk, because of their small body size and the multiple medical device-related to the DEHP exposure. The major factors determining the degree to which DEHP migrates from medical devices are temperature, amount of DEHP in the device, storage time, shaking of the device while in contact with the medical solutions and degree of PVC degradation.
Materials degradation in pvc medical devices, dehp leaching and neonatal outcomes
FERRI, MARCELLA;CHIELLINI, FEDERICA
2010-01-01
Abstract
Polymeric materials play a key role in the production of medical and clinical devices thanks to their special features such as flexibility, easy processing and good price/performance ratio. Among the different polymeric matrixes, one of the most used is Poly(vinyl chloride) (PVC). At room temperature PVC is hard and brittle, thus great amounts (40-50%) of phthalate esters that act as plasticizers are added to the polymer to make it flexible and appropriate for medical use. Di-(2-ethylhexyl)-phthalate (DEHP) is the most widely used plasticizer in PVC medical devices. However, DEHP is not chemically bound to PVC and migrates from medical devices with time and use. The potential for DEHP to produce adverse effects in humans has been the subject of considerable discussion and debate in the scientific community. In particular, newborns in the new environment have to be considered at particularly increased risk, because of their small body size and the multiple medical device-related to the DEHP exposure. The major factors determining the degree to which DEHP migrates from medical devices are temperature, amount of DEHP in the device, storage time, shaking of the device while in contact with the medical solutions and degree of PVC degradation.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.