The group velocity of the shallow water according to Saint-Venant's equations with source terms is analyzed. For these equations the classical group velocity relation describes the propagation velocity of a wave packet in normal dispersion e.g. in homogeneous form. The presence of source terms in momentum equation, such as the bottom slope and the friction of bed, gives rise to a singularity in the dispersion relation, causing an anomalous dispersion in which the standard group velocity becomes infinite. This non-physical result reveals that, for nonhomogeneous shallow water equations, the classic relation is not appropriate for describing a wave packet. In order to overcome this difficulty we consider an asymptotic approximation, based on the Taylor series expansion, for the representation of the propagation velocity of a wave packet. The analysis includes the effects of the friction resistance term, Courant number and Froude number. Numerical results are discussed.
On the group velocity for the shallow water equations with source terms
VENUTELLI, MAURIZIO
2010-01-01
Abstract
The group velocity of the shallow water according to Saint-Venant's equations with source terms is analyzed. For these equations the classical group velocity relation describes the propagation velocity of a wave packet in normal dispersion e.g. in homogeneous form. The presence of source terms in momentum equation, such as the bottom slope and the friction of bed, gives rise to a singularity in the dispersion relation, causing an anomalous dispersion in which the standard group velocity becomes infinite. This non-physical result reveals that, for nonhomogeneous shallow water equations, the classic relation is not appropriate for describing a wave packet. In order to overcome this difficulty we consider an asymptotic approximation, based on the Taylor series expansion, for the representation of the propagation velocity of a wave packet. The analysis includes the effects of the friction resistance term, Courant number and Froude number. Numerical results are discussed.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.