We consider the Renyi entropies S(n)(l) in the one-dimensional spin1/ 2 Heisenberg XX chain in a magnetic field. The case n = 1 corresponds to the von Neumann 'entanglement' entropy. Using a combination of methods based on the generalized Fisher Hartwig conjecture and a recurrence relation connected to the Painleve e VI differential equation we obtain the asymptotic behaviour, accurate to order O(l(-3)), of the Renyi entropies S(n)(l) for large block lengths l. For n = 1, 2, 3, 10 this constitutes the 3, 6, 10, 48 leading terms respectively. The o(1) contributions are found to exhibit a rich structure of oscillatory behaviour, which we analyse in some detail both for finite n and in the limit n ->infinity.

Universal corrections to scaling for block entanglement in spin-1/2 XX chains

CALABRESE, PASQUALE;
2010-01-01

Abstract

We consider the Renyi entropies S(n)(l) in the one-dimensional spin1/ 2 Heisenberg XX chain in a magnetic field. The case n = 1 corresponds to the von Neumann 'entanglement' entropy. Using a combination of methods based on the generalized Fisher Hartwig conjecture and a recurrence relation connected to the Painleve e VI differential equation we obtain the asymptotic behaviour, accurate to order O(l(-3)), of the Renyi entropies S(n)(l) for large block lengths l. For n = 1, 2, 3, 10 this constitutes the 3, 6, 10, 48 leading terms respectively. The o(1) contributions are found to exhibit a rich structure of oscillatory behaviour, which we analyse in some detail both for finite n and in the limit n ->infinity.
2010
Calabrese, Pasquale; Essler, Fhl
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/142228
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 110
social impact