Reactive oxygen species, specifically hydrogen peroxide (H(2)O(2)), have a significant role in hormone production in thyroid tissue. Although recent studies have demonstrated that dual oxidases are responsible for the H(2)O(2) synthesis needed in thyroid hormone production, our data suggest a pivotal role for superoxide dismutase 3 (SOD3) as a major H(2)O(2)-producing enzyme. According to our results, Sod3 is highly expressed in normal thyroid, and becomes even more abundant in rat goiter models. We showed TSH-stimulated expression of Sod3 via phospholipase C-Ca(2+) and cAMP-protein kinase A, a pathway that might be disrupted in thyroid cancer. In line with this finding, we demonstrated an oncogene-dependent decrease in Sod3 mRNA expression synthesis in thyroid cancer cell models that corresponded to a similar decrease in clinical patient samples, suggesting that SOD3 could be used as a differentiation marker in thyroid cancer. Finally, the functional analysis in thyroid models indicated a moderate role for SOD3 in regulating normal thyroid cell proliferation being in line with our previous observations. Endocrine-Related Cancer (2010) 17 785-796

Extracellular superoxide dismutase is a thyroid differentiation marker down-regulated in cancer

BASOLO, FULVIO;
2010-01-01

Abstract

Reactive oxygen species, specifically hydrogen peroxide (H(2)O(2)), have a significant role in hormone production in thyroid tissue. Although recent studies have demonstrated that dual oxidases are responsible for the H(2)O(2) synthesis needed in thyroid hormone production, our data suggest a pivotal role for superoxide dismutase 3 (SOD3) as a major H(2)O(2)-producing enzyme. According to our results, Sod3 is highly expressed in normal thyroid, and becomes even more abundant in rat goiter models. We showed TSH-stimulated expression of Sod3 via phospholipase C-Ca(2+) and cAMP-protein kinase A, a pathway that might be disrupted in thyroid cancer. In line with this finding, we demonstrated an oncogene-dependent decrease in Sod3 mRNA expression synthesis in thyroid cancer cell models that corresponded to a similar decrease in clinical patient samples, suggesting that SOD3 could be used as a differentiation marker in thyroid cancer. Finally, the functional analysis in thyroid models indicated a moderate role for SOD3 in regulating normal thyroid cell proliferation being in line with our previous observations. Endocrine-Related Cancer (2010) 17 785-796
2010
Laatikainen, Le; Castellone, Md; Hebrant, A; Hoste, C; Cantisani, Mc; Laurila, Jp; Salvatore, G; Salerno, P; Basolo, Fulvio; Nasman, J; Dumont, Je; Santoro, M; Laukkanen, Mo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/142775
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 32
social impact