Large wood debris transported by floods affects the scour morphology at bridge piers, thus increasing the bridge failure potential. The characteristic size and shape of the riparian vegetation includes various roughness and permeability conditions of the debris surface. The interaction between two-dimensional flow and rough debris accumulations increases the shear stress, the turbulence and consequently affects the scour evolution process at bridge piers. An experimental study on the bridge pier clear-water scour evolution in the presence of wood debris was conducted at the PITLAB research centre, University of Pisa, Italy. A debris accumulation is characterized by roughness, shape and porosity. Flow intensities range from 65 to 100% of the threshold velocity and included up to 18% of the total flow area. Flow depths were varied from 2.67 to 5.67 times the pier diameter. The effects of wood debris roughness and porosity were analysed in terms of scour temporal evolution and scour morphology.

Temporal scour evolution at bridge piers: effect of wood debris roughness and porosity

PAGLIARA, STEFANO;
2010-01-01

Abstract

Large wood debris transported by floods affects the scour morphology at bridge piers, thus increasing the bridge failure potential. The characteristic size and shape of the riparian vegetation includes various roughness and permeability conditions of the debris surface. The interaction between two-dimensional flow and rough debris accumulations increases the shear stress, the turbulence and consequently affects the scour evolution process at bridge piers. An experimental study on the bridge pier clear-water scour evolution in the presence of wood debris was conducted at the PITLAB research centre, University of Pisa, Italy. A debris accumulation is characterized by roughness, shape and porosity. Flow intensities range from 65 to 100% of the threshold velocity and included up to 18% of the total flow area. Flow depths were varied from 2.67 to 5.67 times the pier diameter. The effects of wood debris roughness and porosity were analysed in terms of scour temporal evolution and scour morphology.
2010
Pagliara, Stefano; Carnacina, I.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/143868
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 80
  • ???jsp.display-item.citation.isi??? 65
social impact