After a brief survey of the definition and the properties of $\Lambda$-symmetries in the general context of dynamical systems, the notion of ``$\Lambda$-constant of motion'' for Hamiltonian equations is introduced. If the Hamiltonian problem is derived from a $\Lambda$-invariant Lagrangian, it is shown how the Lagrangian $\Lambda$-invariance can be transferred into the Hamiltonian context and shown that the Hamiltonian equations turn out to be $\Lambda$-symmetric. Finally, the ``partial'' (Lagrangian) reduction of the Euler-Lagrange equations is compared with the reduction obtained for the corresponding Hamiltonian equations.

Lambda-symmetries of Dynamical Systems, Hamiltonian and Lagrangian equations

CICOGNA, GIAMPAOLO
2011-01-01

Abstract

After a brief survey of the definition and the properties of $\Lambda$-symmetries in the general context of dynamical systems, the notion of ``$\Lambda$-constant of motion'' for Hamiltonian equations is introduced. If the Hamiltonian problem is derived from a $\Lambda$-invariant Lagrangian, it is shown how the Lagrangian $\Lambda$-invariance can be transferred into the Hamiltonian context and shown that the Hamiltonian equations turn out to be $\Lambda$-symmetric. Finally, the ``partial'' (Lagrangian) reduction of the Euler-Lagrange equations is compared with the reduction obtained for the corresponding Hamiltonian equations.
2011
Cicogna, Giampaolo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/144258
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact