It is a known fact that the subobjects of an object in an adhesive category form a distributive lattice. Building on this observation, in the paper we show how the representation theorem for finite distributive lattices applies to subobject lattices. In particular, we introduce a notion of irreducible object in an adhesive category, and we prove that any finite object of an adhesive category can be obtained as the colimit of its irreducible subobjects. Furthermore we show that every arrow between finite objects in an adhesive category can be interpreted as a lattice homomorphism between subobject lattices and, conversely, we characterize those homomorphisms between subobject lattices which can be seen as arrows.

A lattice-theoretical perspective on adhesive categories

BONCHI F;CORRADINI, ANDREA;
2011-01-01

Abstract

It is a known fact that the subobjects of an object in an adhesive category form a distributive lattice. Building on this observation, in the paper we show how the representation theorem for finite distributive lattices applies to subobject lattices. In particular, we introduce a notion of irreducible object in an adhesive category, and we prove that any finite object of an adhesive category can be obtained as the colimit of its irreducible subobjects. Furthermore we show that every arrow between finite objects in an adhesive category can be interpreted as a lattice homomorphism between subobject lattices and, conversely, we characterize those homomorphisms between subobject lattices which can be seen as arrows.
Baldan, P; Bonchi, F; Corradini, Andrea; Heindel, T; Koenig, B.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/145203
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact