We prove that a backward orbit with bounded Kobayashi step for a hyperbolic, parabolic or strongly elliptic holomorphic self-map of a bounded strongly convex C^2 domain in C^d necessarily converges to a repelling or parabolic boundary fixed point, generalizing previous results obtained by Poggi-Corradini in the unit disk and by Ostapyuk in the unit ball of C^d.

Backward iteration in strongly convex domains

ABATE, MARCO;
2011-01-01

Abstract

We prove that a backward orbit with bounded Kobayashi step for a hyperbolic, parabolic or strongly elliptic holomorphic self-map of a bounded strongly convex C^2 domain in C^d necessarily converges to a repelling or parabolic boundary fixed point, generalizing previous results obtained by Poggi-Corradini in the unit disk and by Ostapyuk in the unit ball of C^d.
2011
Abate, Marco; Raissy, J.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/147056
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact