The increasing number of network attacks causes growing problems for network operators and users. Thus, detecting anomalous traffic is of primary interest in IP networks management. In this paper we present a novel method for network anomaly detection, based on the idea of discovering Heavy Change (HC) in the distribution of the Heavy Hitters in the network traffic. To assess the validity of the proposed method, we have performed an extensive experimental evaluation phase, during which our system performance have been compared to a more classical HC-based approach. The performance analysis, presented in this paper, demonstrates the effectiveness of the proposed method.

Detecting Heavy Change in the Heavy Hitter Distribution of Network Traffic

CALLEGARI, CHRISTIAN;GIORDANO, STEFANO;PAGANO, MICHELE;
2011-01-01

Abstract

The increasing number of network attacks causes growing problems for network operators and users. Thus, detecting anomalous traffic is of primary interest in IP networks management. In this paper we present a novel method for network anomaly detection, based on the idea of discovering Heavy Change (HC) in the distribution of the Heavy Hitters in the network traffic. To assess the validity of the proposed method, we have performed an extensive experimental evaluation phase, during which our system performance have been compared to a more classical HC-based approach. The performance analysis, presented in this paper, demonstrates the effectiveness of the proposed method.
2011
9781424495399
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/148442
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact