We consider the dyadic model, which is a toy model to test issues of well-posedness and blow-up for the Navier--Stokes and Euler equations. We prove well-posedness of positive solutions of the viscous problem in the relevant scaling range which corresponds to Navier--Stokes. Likewise we prove well-posedness for the inviscid problem (in a suitable regularity class) when the parameter corresponds to the strongest transport effect of the non-linearity

Smooth solutions for the dyadic model

ROMITO, MARCO
2011-01-01

Abstract

We consider the dyadic model, which is a toy model to test issues of well-posedness and blow-up for the Navier--Stokes and Euler equations. We prove well-posedness of positive solutions of the viscous problem in the relevant scaling range which corresponds to Navier--Stokes. Likewise we prove well-posedness for the inviscid problem (in a suitable regularity class) when the parameter corresponds to the strongest transport effect of the non-linearity
2011
Barbato, D; Morandin, F; Romito, Marco
File in questo prodotto:
File Dimensione Formato  
2011Nonlin_BarMorRom.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Importato da Ugov Ricerca - Accesso privato/ristretto
Dimensione 198.87 kB
Formato Adobe PDF
198.87 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/149237
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 24
social impact