CMOS multichannel front-end electronics suitable for Silicon Photomultiplier detectors has been developed, mainly intended for medical imaging applications. The architecture of the analog channel, DC coupled to the detector, is based on a full current-mode approach, which allows to achieve a wide input dynamic range of about 70 pC while retaining very fast self-triggering capabilities. An 8-channel ASIC with on-chip ADC and a 32-channel prototype have been designed and manufactured, both featuring serial and sparse readout capabilities and a fast-OR circuit, able to generate a high-speed trigger signal from the discriminator outputs of the analog channels. Measurements obtained by coupling the 8-channel prototypes to an injection capacitance have been carried out for characterization purposes. The circuit has been also used to read-out SiPMs coupled to different kinds of light sources, such as a blue LED and a small LYSO scintillation crystal excited by gamma photons with different energies. The results obtained from these tests are presented and discussed, confirming the effectiveness of the proposed front-end architecture. (C) 2010 Elsevier B.V. All rights reserved.

Design and characterization of CMOS multichannel front-end electronics for silicon photomultipliers

DEL GUERRA, ALBERTO
2011-01-01

Abstract

CMOS multichannel front-end electronics suitable for Silicon Photomultiplier detectors has been developed, mainly intended for medical imaging applications. The architecture of the analog channel, DC coupled to the detector, is based on a full current-mode approach, which allows to achieve a wide input dynamic range of about 70 pC while retaining very fast self-triggering capabilities. An 8-channel ASIC with on-chip ADC and a 32-channel prototype have been designed and manufactured, both featuring serial and sparse readout capabilities and a fast-OR circuit, able to generate a high-speed trigger signal from the discriminator outputs of the analog channels. Measurements obtained by coupling the 8-channel prototypes to an injection capacitance have been carried out for characterization purposes. The circuit has been also used to read-out SiPMs coupled to different kinds of light sources, such as a blue LED and a small LYSO scintillation crystal excited by gamma photons with different energies. The results obtained from these tests are presented and discussed, confirming the effectiveness of the proposed front-end architecture. (C) 2010 Elsevier B.V. All rights reserved.
2011
Argentieri, A; Corsi, F; Foresta, M; Marzocca, C; DEL GUERRA, Alberto
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/150366
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 15
social impact