We propose a method by which the generalized transport properties and coefficients at all wavelengths and frequencies can be obtained by inversion of an exact kinetic equation. The necessary data are the density-density, energy-energy, and density-energy time correlation functions, which can be obtained by molecular-dynamics simulation. In addition, also the coupling between viscous stress tensor and energy flux vector can be obtained without approximation. This allows one to check the validity of the Markov assumption in a straightforward way. As a first test case, the theory is applied to liquid argon in two thermodynamic states. For this system, we calculate and discuss generalized thermodynamic (enthalpy, specific heats, and thermal expansion) and transport properties (longitudinal viscosity, thermal conductivity)
Generalized thermodynamic and transport properties. I. Simple liquids
TANI, ALESSANDRO
2011-01-01
Abstract
We propose a method by which the generalized transport properties and coefficients at all wavelengths and frequencies can be obtained by inversion of an exact kinetic equation. The necessary data are the density-density, energy-energy, and density-energy time correlation functions, which can be obtained by molecular-dynamics simulation. In addition, also the coupling between viscous stress tensor and energy flux vector can be obtained without approximation. This allows one to check the validity of the Markov assumption in a straightforward way. As a first test case, the theory is applied to liquid argon in two thermodynamic states. For this system, we calculate and discuss generalized thermodynamic (enthalpy, specific heats, and thermal expansion) and transport properties (longitudinal viscosity, thermal conductivity)I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.