Faddeev and Niemi (FN) have introduced an abelian gauge theory which simulates dynamical abelianization in Yang-Mills theory (YM). It contains both YM instantons and Wu-Yang monopoles and appears to be able to describe the confining phase. Motivated by the meson degeneracy problem in dynamical abelianization models, in this note we present a generalization of the FN theory. We first generalize the Cho connection to dynamical symmetry breaking pattern SU(N + 1) -> U(N), and subsequently try to complete the Faddeev-Niemi decomposition by keeping the missing degrees of freedom. While it is not possible to write an on-shell complete FN decomposition, in the case of SU(3) theory of physical interest we find an off-shell complete decomposition for SU(3). U(2) which amounts to partial gauge fixing, generalizing naturally the result found by Faddeev and Niemi for the abelian scenario SU(N + 1) -> U(1) N. We discuss general topological aspects of these breakings, demonstrating for example that the FN knot solitons never exist when the unbroken gauge symmetry is nonabelian, and recovering the usual no-go theorems for colored dyons.

Nonabelian Faddeev-Niemi decomposition of the SU(3) Yang-Mills theory

KONISHI, KENICHI;
2011-01-01

Abstract

Faddeev and Niemi (FN) have introduced an abelian gauge theory which simulates dynamical abelianization in Yang-Mills theory (YM). It contains both YM instantons and Wu-Yang monopoles and appears to be able to describe the confining phase. Motivated by the meson degeneracy problem in dynamical abelianization models, in this note we present a generalization of the FN theory. We first generalize the Cho connection to dynamical symmetry breaking pattern SU(N + 1) -> U(N), and subsequently try to complete the Faddeev-Niemi decomposition by keeping the missing degrees of freedom. While it is not possible to write an on-shell complete FN decomposition, in the case of SU(3) theory of physical interest we find an off-shell complete decomposition for SU(3). U(2) which amounts to partial gauge fixing, generalizing naturally the result found by Faddeev and Niemi for the abelian scenario SU(N + 1) -> U(1) N. We discuss general topological aspects of these breakings, demonstrating for example that the FN knot solitons never exist when the unbroken gauge symmetry is nonabelian, and recovering the usual no-go theorems for colored dyons.
2011
Evslin, J; Giacomelli, S; Konishi, Kenichi; Michelini, A.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/150594
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 1
social impact