Fibrous meshes based on three different poly(vinyl alcohol) (PVA) polymers, with 12% vinyl acetate monomeric units and molar weights of 37,000, 67,000, and 130,000 were developed as potential scaffolds for regenerative medical applications. The meshes were electrospun and characterized by molecular weight, concentration, applied voltage, and needle-collector distance. The influence of feed rate and the electrodes configuration (needle-to-tip and screen-to-screen system) was determined. Highly porous, 3D structures composed of randomly oriented ultrafine fibers, with an average fiber diameter of a few hundred nanometers were developed. Solutions of PVA and human serum albumin were successfully electrospun and the fibrous mesh was stabilized with glutaraldehyde. The influence of these operations on the mechanical properties was evaluated by uniaxial tensile testing.
Poly(vinyl alcohol)-based electrospun meshes as potential candidate scaffolds in regenerative medicine
PUPPI, DARIO;PIRAS, ANNA MARIA;CHIELLINI, FEDERICA;CHIELLINI, EMO
2011-01-01
Abstract
Fibrous meshes based on three different poly(vinyl alcohol) (PVA) polymers, with 12% vinyl acetate monomeric units and molar weights of 37,000, 67,000, and 130,000 were developed as potential scaffolds for regenerative medical applications. The meshes were electrospun and characterized by molecular weight, concentration, applied voltage, and needle-collector distance. The influence of feed rate and the electrodes configuration (needle-to-tip and screen-to-screen system) was determined. Highly porous, 3D structures composed of randomly oriented ultrafine fibers, with an average fiber diameter of a few hundred nanometers were developed. Solutions of PVA and human serum albumin were successfully electrospun and the fibrous mesh was stabilized with glutaraldehyde. The influence of these operations on the mechanical properties was evaluated by uniaxial tensile testing.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.