We provide the first exact calculation of the height distribution at arbitrary time t of the continuum Kardar-Parisi-Zhang (KPZ) growth equation in one dimension with flat initial conditions. We use the mapping onto a directed polymer with one end fixed, one free, and the Bethe ansatz for the replicated attractive boson model. We obtain the generating function of the moments of the directed polymer partition sum as a Fredholm Pfaffian. Our formula, valid for all times, exhibits convergence of the free energy (i.e., KPZ height) distribution to the Gaussian orthogonal ensemble Tracy-Widom distribution at large time.

Exact Solution for the Kardar-Parisi-Zhang Equation with Flat Initial Conditions

CALABRESE, PASQUALE;
2011-01-01

Abstract

We provide the first exact calculation of the height distribution at arbitrary time t of the continuum Kardar-Parisi-Zhang (KPZ) growth equation in one dimension with flat initial conditions. We use the mapping onto a directed polymer with one end fixed, one free, and the Bethe ansatz for the replicated attractive boson model. We obtain the generating function of the moments of the directed polymer partition sum as a Fredholm Pfaffian. Our formula, valid for all times, exhibits convergence of the free energy (i.e., KPZ height) distribution to the Gaussian orthogonal ensemble Tracy-Widom distribution at large time.
2011
Calabrese, Pasquale; Le Doussal, P.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/151174
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 208
social impact