Experience at high luminosity hadron collider experiments shows that tracking information enhances the trigger rejection capabilities while retaining high efficiency for interesting physics events[1]. The design of a tracking based trigger for Super LHC (S-LHC), the already envisaged high luminosity upgrade of the LHC collider, is an extremely challenging task, and requires the identification of high-momentum particle tracks as a part of the Level 1 Trigger. Simulation studies show that this can be achieved by correlating hits on two closely spaced silicon strip sensors. This work focuses on the design and development of micro-strip stacked prototype modules and will also discuss the technical challenges in the construction and the final detector performance. Studies of possible sensor geometries and wire-bonding techniques will be also presented. The prototypes have been built with the silicon sensors and electronics used to equip the present CMS Tracker[2]. Correlation of signals collected from sensors are processed off detector. We will present the results of tests performed on the prototype modules in terms of the noise performance of the proposed stack geometry. Preliminary results in terms of signal over noise and tracking performance with cosmic rays will also be shown.

Design and development of micro-strip stacked module prototypes to measure flying particle directions

MESSINEO, ALBERTO MARIA;
2011

Abstract

Experience at high luminosity hadron collider experiments shows that tracking information enhances the trigger rejection capabilities while retaining high efficiency for interesting physics events[1]. The design of a tracking based trigger for Super LHC (S-LHC), the already envisaged high luminosity upgrade of the LHC collider, is an extremely challenging task, and requires the identification of high-momentum particle tracks as a part of the Level 1 Trigger. Simulation studies show that this can be achieved by correlating hits on two closely spaced silicon strip sensors. This work focuses on the design and development of micro-strip stacked prototype modules and will also discuss the technical challenges in the construction and the final detector performance. Studies of possible sensor geometries and wire-bonding techniques will be also presented. The prototypes have been built with the silicon sensors and electronics used to equip the present CMS Tracker[2]. Correlation of signals collected from sensors are processed off detector. We will present the results of tests performed on the prototype modules in terms of the noise performance of the proposed stack geometry. Preliminary results in terms of signal over noise and tracking performance with cosmic rays will also be shown.
Bernardini, J; Bosi, F; Dell'Orso, R; Fiori, F; Messineo, ALBERTO MARIA; Palla, F; Profeti, A; Verdini, Pg
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/151449
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact