We consider a 3D Approximate Deconvolution Model ADM which belongs to the class of Large Eddy Simulation (LES) models. We aim at proving that the solution of the ADM converges towards a dissipative solution of the mean Navier-Stokes equations. The study holds for periodic boundary conditions. The convolution filter we first consider is the Helmholtz filter. We next consider generalized convolution filters for which the convergence property still holds

Convergence of approximate deconvolution models to the mean Navier-Stokes Equations

BERSELLI, LUIGI CARLO;
2012

Abstract

We consider a 3D Approximate Deconvolution Model ADM which belongs to the class of Large Eddy Simulation (LES) models. We aim at proving that the solution of the ADM converges towards a dissipative solution of the mean Navier-Stokes equations. The study holds for periodic boundary conditions. The convolution filter we first consider is the Helmholtz filter. We next consider generalized convolution filters for which the convergence property still holds
Berselli, LUIGI CARLO; Lewandowski, R.
File in questo prodotto:
File Dimensione Formato  
ANNIHP2012.pdf

solo utenti autorizzati

Descrizione: https://www.sciencedirect.com/science/article/pii/S0294144911000886
Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 408.55 kB
Formato Adobe PDF
408.55 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
LB_RL_REVISION_3.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 378.42 kB
Formato Adobe PDF
378.42 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/153479
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 37
social impact