By using nonstandard analysis, we prove embeddability properties of differences A − B of sets of integers. (A set A is “embeddable” into B if every finite configuration of A has shifted copies in B.) As corollaries of our main theorem, we obtain improvements of results by I.Z. Ruzsa about intersections of difference sets, and of Jin’s theorem (as refined by V. Bergelson, H. F¨urstenberg and B. Weiss), where a precise bound is given on the number of shifts of A − B which are needed to cover arbitrarily large intervals.

Embeddability properties of difference sets

DI NASSO, MAURO
2014-01-01

Abstract

By using nonstandard analysis, we prove embeddability properties of differences A − B of sets of integers. (A set A is “embeddable” into B if every finite configuration of A has shifted copies in B.) As corollaries of our main theorem, we obtain improvements of results by I.Z. Ruzsa about intersections of difference sets, and of Jin’s theorem (as refined by V. Bergelson, H. F¨urstenberg and B. Weiss), where a precise bound is given on the number of shifts of A − B which are needed to cover arbitrarily large intervals.
2014
DI NASSO, Mauro
File in questo prodotto:
File Dimensione Formato  
integers.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 646.98 kB
Formato Adobe PDF
646.98 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/153560
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact