We introduce the notion of "functional extension" of a set X, by means of two natural algebraic properties of the operator * on unary functions. We study the connections with ultrapowers of structures with universe X, and we give a simple characterization of those functional extensions that correspond to limit ultrapower extensions. In particular we obtain a purely algebraic proof of Keisler's characterization of nonstandard (= complete elementary) extensions.

A simple algebraic characterization of nonstandard extensions

FORTI, MARCO
2012

Abstract

We introduce the notion of "functional extension" of a set X, by means of two natural algebraic properties of the operator * on unary functions. We study the connections with ultrapowers of structures with universe X, and we give a simple characterization of those functional extensions that correspond to limit ultrapower extensions. In particular we obtain a purely algebraic proof of Keisler's characterization of nonstandard (= complete elementary) extensions.
Forti, Marco
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/153711
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact