Despite increasing evidence suggests that serotonin (5-HT) can influence neurogenesis, neuronal migration and circuitry formation, the precise role of 5-HT on central nervous system (CNS) development is only beginning to be elucidated. Moreover, how changes in serotonin homeostasis during critical developmental periods may have etiological relevance to human mental disorders, remains an unsolved question. In this study we address the consequences of 5-HT synthesis abrogation on CNS development using a knock-in mouse line in which the tryptophan hydroxylase 2 (Tph2) gene is replaced by the eGFP reporter. We report that lack of brain 5-HT results in a dramatic reduction of body growth rate and in 60% lethality within the first 3 weeks after birth, with no gross anatomical changes in the brain. Thanks to the specific expression of the eGFP, we could highlight the serotonergic system independently of 5-HT immunoreactivity. We found that lack of central serotonin produces severe abnormalities in the serotonergic circuitry formation with a brain region- and time- specific effect. Indeed, we observed a striking reduction of serotonergic innervation to the suprachiasmatic and thalamic paraventricular nuclei, while a marked serotonergic hyperinnervation was found in the nucleus accumbens and hippocampus of Tph2∷eGFP mutants. Finally, we demonstrated that BDNF expression is significantly up-regulated in the hippocampus of mice lacking brain 5-HT, mirroring the timing of the appearance of hyperinnervation and thus unmasking a possible regulatory feedback mechanism tuning the serotonergic neuronal circuitry formation. On the whole, these findings reveal that alterations of serotonin levels during CNS development affect the proper wiring of the brain that may produce long-lasting changes leading to neurodevelopmental disorders.

Lack of brain serotonin affects postnatal development and serotonergic neuronal circuitry formation

MIGLIARINI, SARA;PASQUALETTI, MASSIMO
2013-01-01

Abstract

Despite increasing evidence suggests that serotonin (5-HT) can influence neurogenesis, neuronal migration and circuitry formation, the precise role of 5-HT on central nervous system (CNS) development is only beginning to be elucidated. Moreover, how changes in serotonin homeostasis during critical developmental periods may have etiological relevance to human mental disorders, remains an unsolved question. In this study we address the consequences of 5-HT synthesis abrogation on CNS development using a knock-in mouse line in which the tryptophan hydroxylase 2 (Tph2) gene is replaced by the eGFP reporter. We report that lack of brain 5-HT results in a dramatic reduction of body growth rate and in 60% lethality within the first 3 weeks after birth, with no gross anatomical changes in the brain. Thanks to the specific expression of the eGFP, we could highlight the serotonergic system independently of 5-HT immunoreactivity. We found that lack of central serotonin produces severe abnormalities in the serotonergic circuitry formation with a brain region- and time- specific effect. Indeed, we observed a striking reduction of serotonergic innervation to the suprachiasmatic and thalamic paraventricular nuclei, while a marked serotonergic hyperinnervation was found in the nucleus accumbens and hippocampus of Tph2∷eGFP mutants. Finally, we demonstrated that BDNF expression is significantly up-regulated in the hippocampus of mice lacking brain 5-HT, mirroring the timing of the appearance of hyperinnervation and thus unmasking a possible regulatory feedback mechanism tuning the serotonergic neuronal circuitry formation. On the whole, these findings reveal that alterations of serotonin levels during CNS development affect the proper wiring of the brain that may produce long-lasting changes leading to neurodevelopmental disorders.
2013
Migliarini, Sara; Pacini, G.; Pelosi, B.; Lunardi, G.; Pasqualetti, Massimo
File in questo prodotto:
File Dimensione Formato  
Migliarini_etal_MolPsychiatry_2013.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 7.55 MB
Formato Adobe PDF
7.55 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/154271
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 172
  • ???jsp.display-item.citation.isi??? 169
social impact