In this work we study the evolution of the free boundary between two different fluids in a porous medium where the permeability is a two dimensional step function. The medium can fill the whole plane R^2 or a bounded strip S=RX(-pi/2,pi/2). The system is in the stable regime if the denser fluid is below the lighter one. First, we show local existence in Sobolev spaces by means of energy method when the system is in the stable regime. Then we prove the existence of curves such that they start in the stable regime and in finite time they reach the unstable one. This change of regime (turning) was first proven in [5] for the homogenous Muskat problem with infinite depth.

Local solvability and turning for the inhomogeneous Muskat problem

BERSELLI, LUIGI CARLO;
2014

Abstract

In this work we study the evolution of the free boundary between two different fluids in a porous medium where the permeability is a two dimensional step function. The medium can fill the whole plane R^2 or a bounded strip S=RX(-pi/2,pi/2). The system is in the stable regime if the denser fluid is below the lighter one. First, we show local existence in Sobolev spaces by means of energy method when the system is in the stable regime. Then we prove the existence of curves such that they start in the stable regime and in finite time they reach the unstable one. This change of regime (turning) was first proven in [5] for the homogenous Muskat problem with infinite depth.
Berselli, LUIGI CARLO; Cordoba, D.; Granero Belinchon, R.
File in questo prodotto:
File Dimensione Formato  
IFB2014.pdf

non disponibili

Tipologia: Versione finale editoriale
Licenza: Importato da Ugov Ricerca - Accesso privato/ristretto
Dimensione 663.03 kB
Formato Adobe PDF
663.03 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
ArXiv-1311.2194-Granero.pdf

accesso aperto

Descrizione: versione sottomessa
Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 473.86 kB
Formato Adobe PDF
473.86 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/159170
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 22
social impact