The properties of isospin-asymmetric nuclear matter have been investigated in the framework of the extended Brueckner-Hartree-Fock approximation at zero temperature. Self-consistent calculations using the Argonne V-14 interaction are reported for several values of the asymmetry parameter beta = (N - Z)/A, ranging from symmetric nuclear matter to pure neutron matter. The binding energy per nucleon fulfills the beta(2) law in the whole asymmetry range. The symmetry energy is calculated for different densities and discussed in comparison with other predictions, At the saturation point it is in fairly good agreement with the empirical value. The present approximation, based on the Landau definition of quasiparticle energy, is investigated in terms of the Hugenholtz-Van Hove theorem, which is proved to be fulfilled with a good accuracy at various asymmetries. The isospin dependence of the single-particle properties is discussed, including mean field, effective mass, and mean free path of neutrons and protons. The isospin effects in nuclear physics and nuclear astrophysics are briefly discussed. [S0556-2813(99)03108-8].

Asymmetric Nuclear Matter from extended Brueckner theory

BOMBACI, IGNAZIO;
1999-01-01

Abstract

The properties of isospin-asymmetric nuclear matter have been investigated in the framework of the extended Brueckner-Hartree-Fock approximation at zero temperature. Self-consistent calculations using the Argonne V-14 interaction are reported for several values of the asymmetry parameter beta = (N - Z)/A, ranging from symmetric nuclear matter to pure neutron matter. The binding energy per nucleon fulfills the beta(2) law in the whole asymmetry range. The symmetry energy is calculated for different densities and discussed in comparison with other predictions, At the saturation point it is in fairly good agreement with the empirical value. The present approximation, based on the Landau definition of quasiparticle energy, is investigated in terms of the Hugenholtz-Van Hove theorem, which is proved to be fulfilled with a good accuracy at various asymmetries. The isospin dependence of the single-particle properties is discussed, including mean field, effective mass, and mean free path of neutrons and protons. The isospin effects in nuclear physics and nuclear astrophysics are briefly discussed. [S0556-2813(99)03108-8].
1999
Zuo, W; Bombaci, Ignazio; Lombardo, U.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/160386
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 302
  • ???jsp.display-item.citation.isi??? 313
social impact